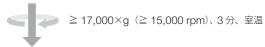
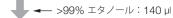

*1 1 mlのLRT当たり10 µlの 2-MEを加える。


RA-b-16

マウス脾臓からの total RNA分離

『プロトコル 1(15-30 mg)


- a. ボールミルホモジナイザー(トミー精工(株)Micro Smash MS-100): ジルコニアビーズ(5 mmø)、3,800 rpm、300 秒
- b. Rotor-Stator ホモジナイザー: 7 mmø プローブ、20,000 rpm、30 秒 \times 2 回
- c. モーター付き、マイクロチューブ用ペッスルホモジナイザー:
 1 分間以上 → 300 µl の LRT (2-ME 添加済み) *1 を加え、ボルテックス: 15 秒 」

385 μl の上清を新しい 1.5 ml マイクロチューブに移す

ボルテックス:15 秒(最大回転数) 軽くスピンダウン

ボルテックス:1分(最大回転数)

QuickGene のカートリッジへ全量添加

Total RNA 回収(回収液量初期値:100 μl)

*2 本事例は旧機種で取得したデータ も含まれます。 その他QuickGeneシリーズでもこの プロトコルをご参考頂けます。

■プロトコル 2(5-15 mg)

組織量を決定する

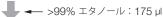
ホモジナイズ用チューブ

- **→** マウス脾臓:5~15 mg ハサミ、ハンマーなどを用いて、組織を 1.5~2 mm 角の 小ブロックにカットする
- LRT (2-ME 添加済み) *1:500 μl (ペッスルの場合は、200 μ l の LRT(2-ME 添加済み)*1 を加える)

*1 1 mlの LRT 当たり 10 μの 2-ME を加える。

ホモジナイズ

- a. ボールミルホモジナイザー(トミー精工(株)Micro Smash MS-100): ジルコニアビーズ (5 mmø)、3,800 rpm、300 秒
- b. Rotor-Stator ホモジナイザー: 7 mmø プローブ、20,000 rpm、30 秒 \times 2 回
- c. モーター付き、マイクロチューブ用ペッスルホモジナイザー: 1 分間以上 → 300 µl の LRT (2-ME 添加済み) *1 を加え、ボルテックス:15 秒 _



≥ 17,000×g (≥ 15,000 rpm)、3分、室温

350 µl の上清を新しい 1.5 ml マイクロチューブに移す

ボルテックス:15秒(最大回転数) 軽くスピンダウン

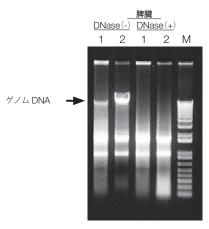
ボルテックス:1分(最大回転数)

軽くスピンダウン

QuickGene のカートリッジへ全量添加

Total RNA 回収(回収液量初期値:100 μl)

*2 本事例は旧機種で取得したデータ も含まれます。 その他QuickGeneシリーズでもこ のプロトコルをご参考頂けます。



▋結果

電気泳動図

QuickGene システム(ボールミルホモジナイザー使用)および競合 A キット(スピンカラム法)を用いて、マウスの脾臓組織から分離した total RNA で非変性アガロースゲル電気泳動を行った。

電気泳動条件:1% アガロース / 1 × TAE

M:マーカー (1 kb PLUS DNA Ladder: Invitrogen)

1: QuickGene (MS-100 使用)

2:競合Aキット(スピンカラム法)

■ Total RNA の収量

	組織	ボールミルホモジナイザー(MS-100)			Rotor-Stator ホモジナイザー		
		組織の量	DNase (+)	DNase (-)	組織の量	DNase (+)	DNase (-)
	脾臓	30 mg	48 µg	54 µg	20 mg	32 µg	31 µg

■ タンパク質の混入: A260/280

組織	組織の量	A260/280		
市 且 市	祖職の里	DNase (+)	DNase (-)	
脾臓 30 mg		2.05	2.30	

■ カオトロピック塩の混入: A260/230

組織	組織の量	A260/230		
市 丛市北	শ越の里	DNase (+)	DNase (-)	
脾臓 30 mg		2.23	2.09	

М

その他

• RT-PCR

QuickGene システム(ボールミルホモジナイザー使用)および競合 A キット(スピンカラム法)を用いて分離した total RNA で RT-PCR を行った。

テンプレート:マウス脾臓からの total RNA (DNase 処理あり) 500 ng

酵素:SuperScript II (Invitrogen)

< PCR 条件 >

テンプレート:Total RNA(10 pg/μl)相当量の cDNA

プライマー:G3PDH プライマー

酵素: Takara Taq Hot Start Version (TaKaRa)

<電気泳動条件 >

1% アガロース / 1 × TAE

 $M: \neg - \neg \neg$ (100 bp DNA Ladder: Invitrogen)

1: QuickGene

2: 競合 A キット (スピンカラム法)

+:ポジティブコントロール (mLiver RNA: Clontech)

-:ネガティブコントロール(RNase-free water)

■共通プロトコルサンプル

胸腺

マウス精巣、マウス肝臓、マウス脳、マウス肺、マウス腎臓

